3.6.43 \(\int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx\) [543]

3.6.43.1 Optimal result
3.6.43.2 Mathematica [A] (verified)
3.6.43.3 Rubi [A] (verified)
3.6.43.4 Maple [F]
3.6.43.5 Fricas [F]
3.6.43.6 Sympy [F]
3.6.43.7 Maxima [F(-2)]
3.6.43.8 Giac [F]
3.6.43.9 Mupad [F(-1)]

3.6.43.1 Optimal result

Integrand size = 32, antiderivative size = 230 \[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=-\frac {2 a b e x \sqrt {1-c^2 x^2}}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {2 b^2 e \left (1-c^2 x^2\right )}{c \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {2 b^2 e x \sqrt {1-c^2 x^2} \arcsin (c x)}{\sqrt {d+c d x} \sqrt {e-c e x}}+\frac {e \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{c \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {e \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^3}{3 b c \sqrt {d+c d x} \sqrt {e-c e x}} \]

output
-2*b^2*e*(-c^2*x^2+1)/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+e*(-c^2*x^2+1)*(a 
+b*arcsin(c*x))^2/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-2*a*b*e*x*(-c^2*x^2+1 
)^(1/2)/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-2*b^2*e*x*arcsin(c*x)*(-c^2*x^2+1 
)^(1/2)/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+1/3*e*(a+b*arcsin(c*x))^3*(-c^2*x 
^2+1)^(1/2)/b/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)
 
3.6.43.2 Mathematica [A] (verified)

Time = 2.97 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.29 \[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\frac {3 \sqrt {d+c d x} \sqrt {e-c e x} \left (-2 a b c x+a^2 \sqrt {1-c^2 x^2}-2 b^2 \sqrt {1-c^2 x^2}\right )-6 b \sqrt {d+c d x} \sqrt {e-c e x} \left (b c x-a \sqrt {1-c^2 x^2}\right ) \arcsin (c x)+3 b \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sqrt {1-c^2 x^2}\right ) \arcsin (c x)^2+b^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)^3-3 a^2 \sqrt {d} \sqrt {e} \sqrt {1-c^2 x^2} \arctan \left (\frac {c x \sqrt {d+c d x} \sqrt {e-c e x}}{\sqrt {d} \sqrt {e} \left (-1+c^2 x^2\right )}\right )}{3 c d \sqrt {1-c^2 x^2}} \]

input
Integrate[(Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/Sqrt[d + c*d*x],x]
 
output
(3*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(-2*a*b*c*x + a^2*Sqrt[1 - c^2*x^2] - 2 
*b^2*Sqrt[1 - c^2*x^2]) - 6*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(b*c*x - a*S 
qrt[1 - c^2*x^2])*ArcSin[c*x] + 3*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b 
*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*Ar 
cSin[c*x]^3 - 3*a^2*Sqrt[d]*Sqrt[e]*Sqrt[1 - c^2*x^2]*ArcTan[(c*x*Sqrt[d + 
 c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d]*Sqrt[e]*(-1 + c^2*x^2))])/(3*c*d*Sqrt[1 
- c^2*x^2])
 
3.6.43.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.53, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5178, 27, 5262, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {c d x+d}} \, dx\)

\(\Big \downarrow \) 5178

\(\displaystyle \frac {\sqrt {1-c^2 x^2} \int \frac {e (1-c x) (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \sqrt {1-c^2 x^2} \int \frac {(1-c x) (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 5262

\(\displaystyle \frac {e \sqrt {1-c^2 x^2} \int \left (\frac {(a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}-\frac {c x (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}\right )dx}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e \sqrt {1-c^2 x^2} \left (\frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{c}+\frac {(a+b \arcsin (c x))^3}{3 b c}-2 a b x-2 b^2 x \arcsin (c x)-\frac {2 b^2 \sqrt {1-c^2 x^2}}{c}\right )}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

input
Int[(Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/Sqrt[d + c*d*x],x]
 
output
(e*Sqrt[1 - c^2*x^2]*(-2*a*b*x - (2*b^2*Sqrt[1 - c^2*x^2])/c - 2*b^2*x*Arc 
Sin[c*x] + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/c + (a + b*ArcSin[c*x 
])^3/(3*b*c)))/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x])
 

3.6.43.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5178
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) 
 + (g_.)*(x_))^(q_), x_Symbol] :> Simp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^ 
2)^q)   Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 
- e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
 

rule 5262
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^p*(a + 
 b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] & 
& EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ 
[n, 0] && (m == 1 || p > 0 || (n == 1 && p > -1) || (m == 2 && p < -2))
 
3.6.43.4 Maple [F]

\[\int \frac {\left (a +b \arcsin \left (c x \right )\right )^{2} \sqrt {-c e x +e}}{\sqrt {c d x +d}}d x\]

input
int((a+b*arcsin(c*x))^2*(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2),x)
 
output
int((a+b*arcsin(c*x))^2*(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2),x)
 
3.6.43.5 Fricas [F]

\[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int { \frac {\sqrt {-c e x + e} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d}} \,d x } \]

input
integrate((a+b*arcsin(c*x))^2*(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2),x, algorith 
m="fricas")
 
output
integral((b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(-c*e*x + e)/sq 
rt(c*d*x + d), x)
 
3.6.43.6 Sympy [F]

\[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int \frac {\sqrt {- e \left (c x - 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {d \left (c x + 1\right )}}\, dx \]

input
integrate((a+b*asin(c*x))**2*(-c*e*x+e)**(1/2)/(c*d*x+d)**(1/2),x)
 
output
Integral(sqrt(-e*(c*x - 1))*(a + b*asin(c*x))**2/sqrt(d*(c*x + 1)), x)
 
3.6.43.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsin(c*x))^2*(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2),x, algorith 
m="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.43.8 Giac [F]

\[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int { \frac {\sqrt {-c e x + e} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d}} \,d x } \]

input
integrate((a+b*arcsin(c*x))^2*(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2),x, algorith 
m="giac")
 
output
integrate(sqrt(-c*e*x + e)*(b*arcsin(c*x) + a)^2/sqrt(c*d*x + d), x)
 
3.6.43.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e-c e x} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {e-c\,e\,x}}{\sqrt {d+c\,d\,x}} \,d x \]

input
int(((a + b*asin(c*x))^2*(e - c*e*x)^(1/2))/(d + c*d*x)^(1/2),x)
 
output
int(((a + b*asin(c*x))^2*(e - c*e*x)^(1/2))/(d + c*d*x)^(1/2), x)